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Transient Analysis of Coupled, Tapered Transmission
Lines with Arbitrary Nonlinear Terminations
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Abstract—In this paper, a fast and efficient method to simulate
the time-domain transient response of coupled, tapered trans-
mission lines is presented. A time-domain scattering parameter
formulation is used to derive the simple closed-form expression
for the voltage variables for uniform lossless lines; then, this
expression is applied to tapered lines by dividing the lines into
many uniform sections. Computational efficiency and stability are
achieved using recursive time-domain algorithms. The method
that assumes a quasi-TEM mode of propagation is applicable
to nonlinear terminations and inhomogeneous dielectric media.
Memory requirement is minimized and is independent of the
number of time steps. Simulation results when compared with
experimental simulations indicated a good level of agreement.

I. INTRODUCTION

T APERED microstrip transmission lines are often used as
delay equalizers, impedance transformers, and impedance

matching sections in microwave circuits. Currently, tapered
lines are also appearing in digital integrated circuit applications

as interconnections due to the recent development of the tape

automated bonding (TAB) technology. A substantial amount of
work has been devoted to the study of these structures [1]–[9],
which have been investigated from the design viewpoint [8].
Syahkal and Davies [9] used the spectral domain technique
to analyze tapered structures, while Protonotarios and Wing
[8] characterized the line in term of its ABCD parameters
to discuss the properties of the lines. Mehalic and Mittra [1]
modeled tapered lines using an iteration-perturbation approach
from which the frequency-dependent scattering parameters

were extracted and used to simulate the time-domain voltage
response. On the other hand, Rao et al. [10] developed a
method to calculate the input impedance of a tapered line with
arbitrary loads. In general, limited effort has been devoted to
the study of transient and pulse degradations through coupled,
tapered transmission lines [1]–[6].

The method presented in this paper is based on the time-
domain scattering parameter approach. Although scattering
parameters have been widely used in the frequency-domain

(steady state) analysis of microwave circuit design, they are
rarely used in the time-domain (transient) analysis; recently,
they have been used for the time-domain simulation of uni-
form transmission lines with nonlinear terminations [11 ]. The
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advantages of scattering parameters over other network param-
eters such as the H-, Y-, or, Z-parameters become apparent
when distributed networks are analyzed; in such situations, the
scattering parameter approach will result in better numerical
stability and simplicity. First, the method used in [11] is ex-
tended to formulate the transient response of coupled, tapered

transmission lines. Scattering parameter transfer functions are

used to derive recursion relations for the voltage solutions

as a function of time. The algorithm thus implemented can
be conveniently incorporated into a computer program for
simulation.

II. SCATTERING PARAMETERS OF COUPLED UNIFORM LINES

The frequency domain characteristics of coupled uniform
lines, shown in Fig. 1(a), can be analyzed in terms of scattering
parameters employing the notion of a two-port network, and

using a scattering approach, the analysis of the system can
be conveniently broken down into two parts: one which
relates the voltage variables in the test lines while the other

links these voltage variables with the termination conditions.
Reference lines are first inserted at both ends of the test
lines; Fig. l(b) shows a single-line system with reference
lines inserted. It should be pointed out that reference lines are
nonphysical and, furthermore, with the flexibility in the choice
of these reference lines, a scattering parameter approach will
yield a more simplified solution. Now defining modal voltage
coefficient vectors Al, A2, B1, and Bz, at the transition planes,

the scattering parameter matrices of a uniform N-line system,
S1l, S12, S21, and S22, satisfy the following relations in the
reference lines:

B1 = S1lA1 + S12A2 (la)

B2 = S21AI + S2ZAZ (lb)

where Ai and Ili are the incident and reflected modal voltage
vectors, and the subscript 1 indicates the near ends, while
the subscript 2 indicates the far ends assuming the source is
located at the near ends, and the line voltage and current values
can be recovered from

Vi = Eil [Az + Bz]

Ii = H~lZ~l[Az –l?z] i = 1,2

where

(2a)

(2b)

(2C)

(2d)
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Here, the ith rows of&- and Ilr are the voltage and current

eigenvectors corresponding to the ith mode, and Zr is the
modal impedance matrix while the subscript r denotes the

reference line [11 ], A time-domain formulation can be directly

obtained by taking an inverse Fourier transform of (1):

b~(t) = s~~(t) * al(t) + s~~(t) * a~(t) (3a)

b~(t) = s~~(t) * al(t) + s~~(t) * a~(t) (3b)

Lower-case characters indicate the time domain, and each term
is the inverse transform of the corresponding term in (1). The

above equations relate incident wave vectors to reflected waves
through convolution in the test lines, and the equations relating
these wave vectors to termination conditions are given by

al(t) = T1 (t)gl(t) + rl(t)bl(t) (4a)

a~(t) = T’~(t)g2(t) + ~z(t)bz(t) (4b)

where gz (t ) is the modal source voltage vector, and Ti and
I’i are the transmission and reflection coefficient matrices at

the junction of the reference lines and the termination and are

defined by

Ti(t) = [~ + %z~(t)L;lE;lAr]-l (5a)

~z(t) = [1 + E~Zi(t)L~lE~lAr]-l

[1 - ErZz(t)LFIEFIArj; t = 1,2 (5b)

where Zi (t) and 1 are the impedance and identity matrices,
respectively, and Ar is a diagonal eigenvalue matrix whose

elements are given by [Ar],, = 1/u,n,, where Vml, is the

velocity of propagation of the ith mode, It should be noticed

that since the termination is lumped, the termination relations,

(4) and (5), do not require convolutions and are only associated
with the instantaneous values of the voltage and waves and
terminations; thus it is applicable to nonlinear terminations.
Moreover, when terminations are linear, the impedance matri-
ces become time independent, and these equations have to be
calculated only once. By matching the voltages at boundaries,
frequency domain modal scattering parameters for lossless
lines can be obtained:

Sll = S22 = T-l[r – xrx][I – rxrx]-lT (6a)

S12 = S?l = 2ErE-1[1 – l’]XII-PX~X]-lT (6b)

where X is the diagonal matrix with [X],, = e–lW’dlvnZt,and r
and T are the reflection and transmission coefficient matrices
at the junction of the reference lines and the test lines and are
defined by

r = [I+ EE; lZ,HTH-lZR1]-l
~[I - EE~’ZrHTH-lZ&:] (7a)

T = [1+ EEFIZrHrH-lZ~l]-lEE~~. (7b)

Again, the subscript r is used to distinguish between the
variables for the reference lines and for the test lines. Now
using the fact that the reference system consists of arbitrary
nonphysical lines. the test line can be chosen to be equivalent

+

(a)

ref. lme test line rcf kc

21(t) ~(t)

(b)

T1(t) al(t) s21(t)* b(t)

“(’) ~

~d)
bl(t) W( O* a2(t) T2(t)

(c)

Fig. 1. (a) Topological representation of a umform n-line system. (b)
Single-hne system with reference hnes. (c) Time-domam flow-graph repre-
sentation of (a). The * sign indicates a convolution in the time domain.

to the reference lines. Then, we have

r=o (8a)

Sll = S22 = o (8b)

s~~= s~~= x (8c)

With the above results, the convolution in (3) simplifies to

()b~(t) =a~ t– ~

rn

()

bz(t) =al t– :

(9a)

(9b)

where the jth element of al (t– d/urn)is the jth element of
al at t – d/vn. Now u, and bi can be calculated using (4), (5).
and (9), and the total line voltages and currents are recovered
by using (2).

Fig. 1(c) illustrates the final results in terms of a signal flow
graph representation of the time-domain scattering parameters

of the lossless transmission line system. The nodes represent
modal voltage waves and the branches designate the modal

scattering parameters. Although the brdnches for S11 and S2Z
are not drawn due to the final results, they should be included
in the general analysis. In the following section, this flow graph
representation will be extensively used to analyze tapered
lines.
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III. FORMULATION FOR TAPERED LINE SYSTEM

In this section, the formulation of coupled, tapered lines

is presented based on the results obtained from the previ-

ous section. A tapered line system is first approximated by

cascading a large number of uniform coupled line sections

as shown in Fig. 2. In this analysis, the fringing field due

to junction discontinuity of these line sections is neglected

by assuming that a sufficiently large number of sections is

used, which can be further justified by recalling the nature of

the original tapering geometry in which there is no abrupt

junction discontinuity. In general, each section of uniform

coupled lines can be analyzed by inserting a reference system

at both ends of the section. The reference system consists of an

array of ideal uniform transmission lines. Since the reference

system is arbitrary, h is convenient to make h equivalent to

the test system that leads to simpler expressions. Consequently,

each section of the tapered line system will be described in

terms of a different reference system. Connecting the flow

graphs associated with adjacent sections of the ~th junction

will then introduce the branch parameters Tj, rj, T;, and r;

which account for the change in the reference system from
the ~th to the (j + l)th section as shown in Fig. 3(a), (b),

and (c) for the ,jth junction and the first and last junctions,
respectively.

Solution forthe Voltage Waves at an Arbitrary Junction

Based on the study of the flow graph in Fig. 3(a), we
can now write the equations relating the modal voltage wave
vectors of the middle sections of the tapered line segments as
follows:

(10a)~j(~) = Tjwj_l (~) + rjwj(t)

()
wj(~) = slz(j)(~)*+) = u; t– : (lOb)

u;(t) = T’;+lwj+l (q+ rj+lw;(t) (1OC)

()
~;-l(~) = s,,(j-l)(~)”~j-l (~) =~j-1 t– &

(lOd)

where u -. w ., u’-, and, w; are the incident and reflected modal
JJJ

voltage wave vectors of the source and load sides of the
jth section, respectively. and the lengths of each sections are
assumed to be the same for simplicity of notation. Tj, r~, T;,

and rj are the modal transmission and reflection coefficient

matrices associated with the ( i – 1)th iunction which is located

w j.~‘ (t)Tj.lUj.l(t)Wj.l’(t) Tj Uj (t ) Wj’ (t) Tj+l nj+l(t)

--- ---

rj.l

. . . ---
Uj.z ‘(t)Tj.l‘ Wj.l(t) Uj.l‘(t) Tj’ Wj( t) Uj ‘(t) ‘fj+l‘ Wj+l(t)

junction(j-2) junction(j-l) junctionj

(a)

T,(t) ul(t) wl’(t) T2 u2(t) wz’(t) T3 U3(t)
g,(t) \ \ . --

. .

Wl(t) nl’(t) T2’ w2(t) u2’(t) T3‘ w3(t)

,
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(b)
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.- /
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,
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(c)

Fig. 3. Time-domam flow graphs for (a) middle sections, (b) source end,
and (c) load end of coupled. tapered lines. The * sign indicates a convolution
m the time domam.

between the (j – l)th and jth sections. Then, by satisfying the
boundary condition at the (j – 1)th junction, the expressions
of Tj, rj, T;, and r~ at the junction can be obtained:

Tj =2[I+Ej~j:lzj-l~j_l~;lz;ll ‘l~j~;!l
(ha)

-12:’ ]-’Ej_lE;’T;= 2 [I+Ej_l E; 1zjHjHj - 1 ~.l

(llb)

‘lEjE;:l]-lrj = [I+ zj_lHj-lzj

~[I - Zj_,Hj-lH;lz;l~j~;!,] (llC)

I’; =[I+ZjH-H.
J L%:l%lw -11

E:l][I – ZjHjH;:lZj!lEj-l J (lld)

where the subscript j denotes the jth section; a detailed
derivation is given in the Appendix. Substituting ( 10c) and
( 10d) into ( 10a) and ( 10h), (10) can be further simplified as
follows:

Uj(t) = Tjuj_l
(’-fi)+r~w~(’)

Wj(t) = Tj+lwj+l
(’-;) +r~+u~(’-:)

(12a)

( 12b)
.“>.
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From the above equations, it is clear that the forward and

backward voltage waves of the jth junction can be obtained
from the history of the adjacent junctions ((j – l)th and

(~ -t- l)th), and from the voltage continuity relation, the total
voltage at any side of the junction can always be obtained.

Solution for Voltages at the Source and Load Ends

Equations for the voltage vectors at the two ends of the
tapered line system can be easily derived following the above
arguments and using the flow graph in Fig. 3(b) and (c). For
the source end, the expressions are given by

‘ul(t) = T~(t)g~(t) + rs(t)wl (t) (13a)

“(’)=T’W’(’-:)+T2U’(’-:) ‘13b)
To obtain the total line voltage at the load end, the values of
UN and WN are required instead of ?LN and ‘WN; therefore,

including the expressions for UN and w~, we have

()Wjv(t)=+ t–+ . (14d)

Here, gt is the modal voltage source, and the subscripts s and 1

represent the source and load sides of the ith segment, respec-

tively. The reflection and transmission coefficient matrices at
two ends, T’S(t), I’s (t), T1 (t),and rl(t), can be calculated
using (5) in Section II by replacing the subscripts 1 and 2

with s and 1, accordingly. Equations (12), (13), and (14) can
thus be used to simulate the overall system at each time step;
in particular, the line voltage vectors at the two ends are
recovered using

Vs(t) = J?3;1 [741(t) + Wl(t)] (15a)

z~(t) = H;lz;l[w~(t) – w~(t)] (15b)

Vz(t) = Efil[u~(t) + w~(t)] (15C)

ii(t) = ~~ Z; [+(t) – w’N(t)] (15d)

Considering the computer memory space requirement of the
above results, the number of voltage variables to be calculated
for IV sections of lines is (21V + 2): two voltage variables
Uj and Wj, for each section (Equations (12), (13), ( 14c), and

( 14d)), and two additional voltage variables, u; and w;, for

load end (Equations (14a) and ( 14b)). Furthermore, since (12),

(13), and (14) relate values of these voltage variables at the
current time step to the values calculated at (t – 2d/vj ) and
(t - d/~j), these voltage variables have to be stored at most
for 2d/uj, which is twice the time required for the ith mode

voltage wave to travel from one side of the section to the
other side. Thus, the memory location required from the above
results is linearly proportional to the number of sections used

to approximate the tapered lines and the size of the time step.
and is independent of the number of time steps or the length

of the simulation period.

IV. SIMULATION RESULTS

A computer simulation program was implemented based on

the previous results, and was tested for single- and three-line

cases. The space variations of the test structures were all linear,

and specific geometries and dimensions are shown in Fig. 4.

First, for the single-line case, the dielectric thickness was 59

roils, and the relative dielectric constant was 2.55. The input
pulse used to simulate the single line had rise and fall times
of 1 ns and a pulse width of 10 ns with a maximum voltage of
4 V. The static formulas had been used to obtain the effective

permittivity and line impedance for each uniform line section
[12]. Fig. 5 shows the simulated results of voltage waveforms
at both ends of the line with excitation of the input pulse at the
narrow and wide ends, For all simulated cases, the line was
open ended with a source impedance of 50 fl. Tapering effects
are shown with slowly decaying and rising edges between the
sharp transition edges. For the three-line case, the dielectric
thickness was 31 roils and the relative dielectric constant

was 4.7. Rise and fall times of 1.6 ns and pulse width of
17 ns with a maximum voltage of 1.58 V are used for the
input pulse. Circuit parameters of the lines were extracted
using the spectral-iterative technique in conjunction with the
minimization in the boundary condition error. Experiments are
also given to verify the results. The middle line was used to
drive the signal with the same source impedance as in the

previous case. All lines were open ended at both sides except
for the source end of the driving line and load end of the sense
line, which is one of the outer lines. The short and open-ended
terminations are used at the load end of the sense line which
is located at the opposite side of the source end of the driving
line. Fig. 6 shows the comparison of the computer simulation
with the corresponding experimental results. Good agreement
was found except for any parasitic side effects.

V. CONCLUSIONS

A new tecl-mique to simulate the transient response of

coupled, tapered lines is introduced based on time-domain

scattering parameters. In contrast with other known methods,

the present method avoids the use of convolution or the spec-

tral domain approach and thus achieved high computational

efficiency and accuracy. The linear time dependency and con-

stant memory space requirement were achieved with respect to

simulation time, A computer program was written based on the

final results, and simulation results from this program showed

good agreement with the experimental results and other ex-

isting techniques. Although the present method applied only

to tapered lines, it can be further generalized to analyze any
nonuniform transmission lines or lines with distributed load-
ings. Currently, the authors are also studying the improved ver-
sion of this method with constant or frequency-dependent loss.
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Fig. 4. (a) Planar and (b) cross-sectional wews of the simulated tapered
microstrip lines. Units are in reds.
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Fig. 5. Computer simulation plots forthesingle line in Fig. 4(a) The input
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APPENDIX

Derivation of the RejZection and Transmission

Coefjcient klatrices at the Junction

Let us consider the junction of two segments of coupled,
tapered lines, Segments 1 and 2, and denote the incident modal

voltage wave that arrives at the junction from Segment 1 by
A, and the reflected and transmitted modal voltages by B and
C, respectively. Then, the total line voltages and currents at

ShortCktatSense Line
Source End

‘~

-505 10 15 20 ’25 3C
TIME(nS)

Open Ckt at Sense Line
Load End

‘~

.0, ~

-505 10 15 20 25 30
TIME(nS)

Fig. 6. Computer simulation results for the three-line case in Fig. 4(b), The
volmges at driving and sense lines are represented by the sohd and dotted
lines, respectively.

Segments 1 and 2, denoted by VI, V2, 11, and 12, are given

by the following expressions:

VI = E;l[A+B] (A 1a)

V? = E;lC (A lb)

11 = HEIZ&ll [A – B] (A2a)

12 = H;1Z&12C (A~b)

Since these total line voltages and currents at the junction
must be equal, we have

E;l[A+B] = E;lC (A3a)

H;l Z~ll [A – 1?] = H;1Zm12C. (A3b)

Now solving the above equations for B and C in terms of
Al we obtain

B=[I+P]-l[l– P]A (A4a)

c = 2[1+ Q]-lE*E; lA (A4b)

where

P = Z1H1H;1Z;1E2E;1 (A4c)

Q = E2E;1Z1H1H;1Z;1 (A4d)

Finally, the expressions for r and T are then given by

r = [1+ Z1H1H;1Z;1E2E;1]-1

~[1 - ZIHIH.;’Z;’E2E;1] (A5a)

T =2[1+ E2~~lZlHlH~lZ~l]–lE2E~l (A5b)

Similarly, expressions for r’ and T’ can be obtained simply by
interchanging the subscripts 1 and 2 from the above equations.
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